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Exact Dimensional Reduction of Linear Dynamics:
Application to Confined Diffusion
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In their stochastic versions, dynamical systems take the form of the linear dynamics of
a probability distribution. We show that exact dimensional reduction of such systems
can be carried out, and is physically relevant when the dimensions to be eliminated can
be identified with those that represent transient behavior, disappearing under typical
coarse graining. Application is made to non-uniform quasi-low dimensional diffusion,
resulting in a systematic extension of the “classical” Fick-Jacobs approximate reduction
to an exact subdynamics.
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1. INTRODUCTION

A crucial objective along the path to understanding the dynamical behavior of a
complex system lies in the development of tools allowing us to shift back and
forth between different levels of resolution. In particular, we would like to be
able to recognize coarse-grained objects obeying a coarse-grained dynamics that
actually represents a swath of trajectories of the mother system. In the best of
all possible worlds, these objects would themselves be experimental observables,
but at the very least we would know that the trajectories they represent provide
an informative sample of those of the original system. Examples of this strategy
are not in great supply, except in various limiting cases. Sometimes,(1) one can
indeed find “similarity solutions,” in which only the dynamics of a small finite
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number of variables is required. And approximate solutions as functionals of a
primitive, self-consistently obtained, dynamics are the key to Bogoliubov’s graded
time-scale analysis(2) of many-body dynamics. More often, some variant(3) of
Zwanzig’s projection method(4) is used, shifting the complexity in principle to a
non-local time development with a decaying memory. Of course, special situations,
such as the prototype that follows, are also handled by more specialized methods.(5)

The major context of this communication is that of dimensional reduction of
systems that are highly confined in some of the dimensions they inhabit, which
we would therefore like to eliminate from the description, producing a kind of
low-resolution picture. A now classical prototype is that of the diffusion of a
single particle in a container of “small” non-uniform cross-section A(x) normal
to the one-dimensional longitudinal direction x. Assuming that the density does
not vary in the transverse direction allows one to conclude that if the diffusion
equation ρ̇(r, t) = D∇2ρ(r, t) is satisfied in the interior, then the integrated density
p(x, t) = ∫

ρ(xr⊥, t) dr⊥ satisfies the simple (Fick-Jacobs)(6)

ṗ(x, t) = D∂x (A(x)∂x (p(x, t)/A(x, t)). (1)

In recent work, the Bogoliubov strategy was used to extend the applicability of
(1), resulting(8) in an expansion starting in the case of one transverse dimension,
as

ṗ = ∂x

{
A − 1

3
AA

′2 − 1

45
AA′ [2A(AA′′ + A′2)∂x

+ AA′ A′′ + A2 A′′′ − 7A′3] + · · ·} ∂x p/A. (2)

Conversely, the corresponding 2D density ρ(r, t) (representing the high-resolution
picture) can be calculated from the 1D density p(x, t) by the formula

ρ(x, y, t) =
(

1 +
(

y2

2A
− A

6

)
A′ ∂

∂x
+ · · ·

)
p(x, t)

A
. (3)

Here, we will observe that (2) is an example of a reduction process with no ap-
proximation, valid in principle for all linear systems, and hence for the probability
distributions serving as typical descriptive formats.

We now want to consider conclusions such as (2) in a much more general
context. It must of course be emphasized that in the type of problem before
us, the system and the observer are of equal importance: the latter chooses the
compressed data used to represent the system at suitably defined low resolution.
When the system development is fully determined by its initial state, it is in
general not true that the initial observation, bearing highly reduced information,
will determine its own future propagation. But what we will soon show is that
there exists a large class of “trajectories” of the full probability distribution for
which the time development of the mapping onto the observer’s space is indeed
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uniquely determined by a suitable dynamical equation on the reduced space. This
begs the question of how special the full space trajectories must be, and we will
see how the existence of a physically motivated small parameter biases the flow in
the required direction. Since this parameter appears most naturally as a temporal
scaling, it will also be necessary to transform from spatial confinement to temporal
compression to obtain such as (2), but this is more of a technical issue.

2. BASIC FORMULATION

To avoid deeper questions that must ultimately be addressed, we start with
the “high-resolution” time-local, i.e., Markovian, linear dynamics

η̇ + Mη = 0, (4)

where η belongs to the finite-dimensional vector space S, of dimension d, M is a
d × d matrix, and we seek the behavior of the reduced dimension vector

ξ = Pη, (5)

where P maps S onto S′, of dimension d ′ < d. The question we now pose, an
inversion of the usual query, is whether there exists a time-local dynamics

ξ̇ + Qξ = 0, (6)

any solution of which generates one of (4) under a suitable dimension-raising
map W :

η = W ξ, (7)

the existence of which is expected according to the relation (3) and will be verified
in the following study of the spectral structure of the transformation.

Equations (4–7) are deceptively simple in appearance, but nonetheless serve
to mirror in formal detail the physically realistic situations under study. The answer
to the question posed is also deceptively simple, involving rather pedestrian linear
algebra.

For (7) to be consistent with (5), we require ξ = PW ξ for all ξ , i.e., PW = I’,
the identity on S′. Then if (6) holds, we have η̇ = W ξ̇ = −WQ ξ , which satisfies
(4) if WQ ξ = −Mη = −MW ξ for all ξ (since it must also hold initially), and
so

MW = WQ

where PW = I ′, (8)

a simple traditional extension of the linear algebra concept of similarity, see e.q.
Wedderburn.(7) If the pair (8) is satisfied by W and Q, our objective is accom-
plished: Eq. (8) and definition (7) lead directly back from (6) to (4). Indeed, this
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remains the case if ∂/∂t in (4) is replaced by any linear operator on time, e.g. a
discrete jump.

Equation (8) can also be combined into a more compact form. Applying P to
the first line of (8), and using the second line of (8), we have the identification of
the subdynamics

Q = PMW, (9)

so that (8) implies MW = WPMW , and of course M2W = MWPMW . If we
define � = MW , we then have the simple

Q = P�

where M� = � P�. (10)

In fact, if M is invertible and ξ̇ = −Qξ , then Eq. (10) implies Eq. (4): we set
η = M−1�ξ , so that η̇ = M−1�ξ̇ = −M−1�Q ξ = −M−1(� P �)ξ = −�ξ =
−Mη.

3. STRUCTURE OF TRANSFORMATION

The brevity of (9,10) conceals the internal nature of our reduction. Let us
uncover this, still at a somewhat abstract and formal level. An initial surprise,
perhaps, is that our problem, as stated, is very solvable. In fact, it has many
solutions, thus offering both an opportunity and a challenge—the former because
one has many options, the latter because one wants the class of trajectories selected
to have discernible physical relevance.

Suppose for simplicity (but not necessity) that M is hermitian positive def-
inite, so that all solutions of (4) decay in time, and that the eigenvalues {λα} of
M are nondegenerate. Then the solutions of (4) are linear combinations of the
linearly independent set {χα(t) = ψαe−λα t }, where ψα is the normalized eigen-
vector belonging to λα . Hence, {ξα(t) = Pψαe−λα t } spans the solution space of
(6). It follows from (5) and (6) that the d ′ eigenvalues of Q are a subset of the
d eigenvalues of M. For convenience, order them as {λ1, . . . , λd ′ }, so that the
corresponding eigenvectors of Q are {ϕα = Pψα, α = 1, . . . , d ′}. The {ϕα} are in
general not even orthogonal, but it is easy to see that the{

ϕ+
α = ψT

α W, α = 1, . . . , d ′} (11)

are biorthogonal to the {ϕα}, and that

Q =
d ′∑

α=1

λαϕαϕ+
α (12)

on the space S′.
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Conversely, suppose that {λ1, . . . , λd ′ } is a set of d ′ eigenvalues of M, and
choose the basis {ψ1, . . . , ψd ′ , ψd ′+1, . . . , ψd} of eigenvectors of M to represent
the full space S. Then {ϕα = Pψα, α = 1, . . . , d ′} will be non-vanishing linearly
independent for typical choices of {λ1, . . . , λd ′ }, Choose {ϕ+

α } as biorthogonal to
{ϕα}, and define

W =
d ′∑

α=1

ψαϕ+
α

Q =
d ′∑

α=1

λαϕαϕ+
α . (13)

It follows that W Q = ∑d ′
1 λαψαϕ+

α = MW , as well as PW = ∑d ′
1 ϕαϕ+

α =
I ′, as desired.

In other words, what we have established is that the reduction from η̇ + Mη =
0 to ξ̇ + Qξ = 0 is not merely a dimension-reducing linear map, but is rather one
that cleverly chooses a subset of normal modes, with their characteristic time
dependence, to construct a dynamical mirror on a smaller “low resolution” vector
space. This leaves very much unaddressed the nature and physical justification of
the particular subset—specified by the mode frequency subset {λ1, . . . , λd ′ } - that
is to be selected.

4. TRANSIENT ELIMINATION

Which subset {λ1, . . . λd ′ } would we want to choose? If our objective is to
operate at reduced temporal resolution, the choice is clear. We want to eliminate
the high λ eigenvalues responsible for transients, and so “project” onto the space of
low-lying eigenvectors, which we can refer to as quasi-steady. The extent to which
this is accomplished is a function of circumstance, and should be verified in each
case. However, the physics behind the crucial choice of the reduction P is often
apparent. For example, and this is relevant to most of our intended applications,
suppose that

M = M0 + �/ε, (14)

where M is positive definite, � non-negative, and ε a small parameter. Then, as
ε → 0, the spectrum of M is expected to separate into dominantly low λ and
dominantly high λ segments, and we want to set up our formulation so that only
the former are retained. If, furthermore P is such that

P� = 0, (15)
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then it is just the high eigenvalue segment that P eliminates when ε → 0, and
indeed, away from this limit, (9) reduces to

Q = P M0W, (16)

in which the �-dependence is hidden in W.
The parameter ε thus regulates the speed of relaxation in the directions that

we are going to eliminate. In the case of diffusion, ε → 0 corresponds to infinitely
fast transverse diffusion and therefore to infinitely fast transverse relaxation.

5. EXAMPLE

Let us break the abstractness with a toy example. Consider two hard point
particles, x and y, diffusing on a ring of radius 1, i.e. a periodic line segment
of length 2π . The fact that y cannot pass x means that we are restricted to the
domain x ≤ y ≤ x + 2π . Particle x has diffusion constant D = 1, but particle y
has D = 1/ε for control. We will want eventually to take ε = 1, but until then,
ε allows us to separate out the quasi-steady component of the motion of x, and
eliminate the transient part, both generated by the y-interaction. Of course, we
have now generalized (4) and (6) to function space. The joint probability density
ρ(x, y, t) satisfies (4) with

M = −∂2/∂x2 − (1/ε)∂2/∂y2, (17)

and because the current density is J = (−∂ρ/∂x,−(1/ε)∂ρ/∂y), no-flux bound-
ary conditions, applied at the boundaries of the y-motion become

∂ρ/∂x = (1/ε)∂ρ/∂y at y = x and y = x + 2π. (18)

The treatment of (17) and (18) is straightforward, and one finds the eigen-
functions and eigenvalues

ψmn(x, y) = cos(m/2)(y − x) exp ± in (x + εy)

λmn = m2(1 + ε)/4ε + n2(1 + ε) (19)

for integers m and n. The transient component, recognized by λ → ∞ as ε → 0,

is given by m �= 0, and so the quasi-steady component is described by

ψn(x, y) = exp ± in(x + εy), λn = n2(1 + ε). (20)

In particular, the dimensionally reduced ψn(x) = (1/2π )
∫ x+2π

x ψn(x, y)
dy = Cn,ε exp ± in(1 + ε)x, λn = n2(1 + ε), yielding the dimensionally reduced
diffusion

∂ρ/∂t = 1/(1 + ε)∂2ρ/∂x2. (21)
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Note that a) the coefficient 1/(1 + ε) is a power series in ε, converging but
not absolutely, as ε → 1, and b) the coefficient Cn,ε → 0 as ε → 1. Clearly, care
must be exercised in taking this limit.

6. SOLUTION OF EQ. (8)

We now examine in detail the reduction of (14), via the formal expansion

W =
∞∑

s=0

εs Ws, Q =
∞∑

s=0

εs Qs (22)

at fixed P, so that (8) separate at once into the sequence

�W0 = 0, PW0 = I ′,

and

�Ws+1 + M0Ws =
s∑

q=0

Ws−q Qq , PWs+1 = 0 for s ≥ 0. (23)

Applying P to (23) under condition (15), we also have

Qs = P M0Ws, (24)

which serves as consistency condition for the solvability of (23) for Ws+1.
In the limit ε = 0, the density W0ξ represents the “fine resolution” picture

exactly. The infinitely fast transverse relaxation makes the profile flat in the trans-
verse directions, immediately after any change of the “coarse resolution” density
ξ . The succeeding terms Wsξ express s-order corrections, due to finite transverse
relaxation speed at ε > 0, coupled with the corresponding corrections of the coarse
resolution dynamic operator Q.

This is the format we will make use of, but in its function space, e.g.
Master equation,(9) extension. The functions are on the space (x, y), where x and
y denote generalized “longitudinal” and “transverse” coordinate vectors. Then,
P : (x, y),→ (x), so that we can express P formally as P(x, y, ∂y) ≡ P(x), a y-
space operator parametrized by x. Similarly, we have W = W (y, x, ∂x ) ≡ W (y).
In the application about to be studied Mo = M0(y, x, ∂x ) ≡ M0(y) will be non-
vanishing only on x-space, � ≡ �(x, y, ∂y) ≡ �(x) only on y-space, a blatant
separation of the dynamics which is however extremely common. It will also be
useful to imagine P chosen as a literal projection on y-space:

P(x)2 = P(x). (25)
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With this somewhat more explicit notation, (23) becomes, applied to the
relevant function space { f (x)},

�(x)W0(y) f (x) = 0

P(x)W0(y) f (x) = f (x)
(26)

followed by

�(x)Ws+1(y) f (x) + M0(y)Ws(y) f (x) =
s∑

q=0

Ws−q (y)Qq f (x),

P(x)Ws+1(y) f (x) = 0, (27)

and resulting in

Qs f (x) = P(x)M0(y)Ws(y) f (x), (28)

the set Q0 . . . , Qs serving for consistency in solving (27).
Solution of (27) proceeds most directly via construction of Green’s operator

G(x) = G(x, y, ∂y) for the inversion of �(x). G is to satisfy

�(x)G(x) f (x, y) = f (x, y)

P(x)G(x) f (x, y) = 0

whenever P(x) f (x, y) = 0,

(29)

for then the general relations

�(x) a(x, y) = b(x, y)

P(x) a(x, y) = 0

where P(x) b(x, y) = 0,

(30)

are indeed solved by

a(x, y) = G(x)b(x, y). (31)

We will assume that matters have been arranged so that the solution of (30) is
unique, i.e. that �(x) a(x, y) = P(x) a(x, y) = 0 implies that a(x, y) = 0.

In the applications envisioned, we will have

�(x) f (x) = 0, P(x) f (x) = f (x), (32)

so that (26) is solved, and (28) follows, as

W0(y) f (x) = f (x)

Q0 f (x) = P(x)M0(x) f (x). (33)
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The set (27), using (31), is then solved sequentially as

W1(y) f (x) = G(x)(Q0 − M0(x)) f (x),

W2(y) f (x) = G(x)(Q1 − M0(y)W1(y) + W1(y)Q0) f (x), . . .
(34)

coupled with

Q1 f (x) = P(x)M0(y)W1(y) f (x),

Q2 f (x) = P(x)M0(y)W2(y) f (x), . . .
(35)

Example 1. Transversely Confined Diffusion. The situation that motivated the
above development is the following. We consider isotropic diffusion with coefficient
D = 1, on the space of longitudinal coordinates x, transverse Y, with confinement
in Y-space given by the surface (or surfaces) B(x, ε−1/2Y ) = 0, bounding the
allowed volume B(x, ε−1/2Y ) ≥ 0. Here B is monotone decaying in Y in the sense
that the surface B(x, ε−1/2Y ) = K lies within the volume B(x, ε−1/2Y ) ≤ K ′ <

K ; clearly, Y-space at fixed x has been made to scale as ε−1/2.

Diffusion in a region with no-flux boundary conditions at B = 0 is equiva-
lent to having a diffusion constant which vanishes in the prohibited region. Rather
than the implied requirement of initially vanishing density in the whole prohib-
ited region to establish uniqueness, we simply confine all observations to the
allowed region by imagining the projection to be to infinitesimally more than the
allowed region:

P ′(x) f (x, y) = θ+(B(x, ε−1/2Y ) f (x, y))

where θ+(B) = θ (B + κ), (36)

(κ > 0, infinitesimal, only required in case of ambiguity), to be applied to all
asserted relations; θ is the Heaviside step function.

To make use of the formulation above, we need only replace spatial confine-
ment by enhanced transverse diffusion, which we do by rescaling: y = ε−1/2Y , so
that diffusion dynamics is now controlled by

M = −∂x · θ (B(x, y)) ∂x − 1

ε
∂y · θ (B(x, y)) ∂y, (37)

equivalent to ρ̇ − (∂2
x + (1/ε)∂2

y )ρ = 0 inside the surface B(x, y) = 0, while
(∂x B(x, y)) · ∂xρ + (1/ε)(∂y B(x, y)) · ∂yρ = 0 on the bounding surface. We now
carry out our dimensional reduction by projecting onto the mean density over
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available y-space, via

P(x) f (x, y) = 1

A(x)

∫
P ′(x) f (x, y′) dy′

where A(x) =
∫

P ′(x) dy′ =
∫

θ (B(x, y)) dy′;
(38)

note that here, P(x)2 = P(x), P ′(x)2 = P ′(x), but P(x)P ′(x) = P(x). We are
then ready to apply (32)–(35), in which in the present case

M0(y) = ∂x · θ (B(x, y)) ∂x

�(x) = ∂y · θ (B(x, y)) ∂y .
(39)

It is useful to observe, after a few steps of algebra, that

P(x)M0(y) f (x, y) = − 1

A(x)
∂x ·

∫
θ (B(x, y)) ∂x f (x, y) dy. (40)

Then, carrying out (32)–(35), we have, to start, W0(y) = 1 and Q0 f (x) =
−(1/A(x))∂x · ∫

θ (B(x, y))dy ∂x f (x), or

Q0 = −(1/A(x)) ∂x · A(x) ∂x , (41)

just the classical Fick-Jacobs dimensional reduction. Continuing, W1(y) f (x) =
G(x)[(1/A(x))∂x · A(x)∂x − ∂2

x ] f (x), or

W1(y) f (x) = (G(x) · 1)(∂x�n A(x)) · ∂x f (x), (42)

so that

Q1 = −(1/A(x)) ∂x ·
[∫

θ (B(x, y)) G(x) · 1dy

]
∂x�n A(x) · ∂x . (43)

We see that, to this order,

Q1 = −(1/A(x)) ∂x ·
{

A(x) + ε

∫
(θ (B(x, y))G(x) · 1dy[∂x�n A(x)]

}
∂x , (44)

has precisely the same form as Fick-Jacobs, but with a modified kernel. A similar
result has been obtained using a dynamic approximation by Zwanzig,(10) and (44)
also expresses the leading terms of a variational formulation (recently submitted
for publication, see also(11)). The simple form (44) does not extend to higher
order, in which higher derivatives are required (see Kalinay and Percus(8)) for the
one+one dimensional version, worked out in detail, leading e.g. to Eq. (2).

In summary, we have introduced a dimensional reduction technique of
very general utility. When the transient component of the dynamics—typically
Markov—can be identified with a definite part of the transition operator, a cor-
responding series expansion for the reduced dynamics has been obtained. Ap-
plication to few-body Liouville (inertial) dynamics has been studied—with its
relationship to transition state theory—and will be included in a more complete



Exact Dimensional Reduction of Linear Dynamics 1069

presentation now in preparation. Quantum dynamics also falls naturally into our
class of applicable systems. Perhaps most interesting and promising is the corre-
sponding theory for few-body reduction of many-body dynamics, with the ther-
modynamic limit imposing its own special coloration. This is now a major focus
of our activity.

ACKNOWLEDGMENTS

K. K. Mon has been instrumental in motivating the research reported here,
and R. Bowles has contributed as well. Support from DOE Grant No. DE-FG02-
02ER15292 is gratefully acknowledged, and P. Kalinay thanks the Courant Institute
for its hospitality, as well as VEGA grant No. 2/3107/24 for additional support.

REFERENCES

1. See e.g. H. Schlichting, “Boundary Layer Theory,” Chaps Ie, VIII b. Mc Graw-Hill (1955).
2. N. N. Bogoliubov, “Problems of Dynamic Theory in Statistical Physics” in “Studies in Statistical

Mechanics, Vol. 1,” (ed.) J de Boer and G.E. Uhlenbeck, North-Holland Pub, (1962).
3. H. Mori, Prog. Theor. Phys. (Kyoto) 34:423 (1965).
4. R. Zwanzig, in: “Lectures in Theoretical Physics,” Vol. 3, Interscience (1961).
5. V. I. Yudson and P. Reineker, Phys Rev E 64:031108 (2001).
6. M. H. Jacobs, “Diffusion Processess,” Springer (1967).
7. J. H. M. Wedderburn, “Lectures on Matrices,” Chap IX, secs 2,3, American Mathematical Society

(1934).
8. P. Kalinay and J. K. Percus, J. Chem. Phys. 122:204701 (2005).
9. See e.g. N. G. Van Kampen, “Stochastic Processes in Physics and Chemistry,” North-Holland

(1981).
10. R. Zwanzig, J. Phys. Chem. 96:3926 (1992).
11. R. Bowles, K. K. Mon, and J. K. Percus, J. Chem. Phys. 121:10668 (2004).


